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                        UPPER AND LOWER LIMITS

So far we know that monotone, bounded sequences converge, and that any convergent sequence is 
necessarily bounded. These two facts together raise the question: Does every bounded sequence 
converge? Of course not. But just how “far” from convergent is a typical bounded sequence? To 
answer this, we want to broaden our definition of limits. 

Observation:  Let {an}n=1
∞  be a bounded sequence of real numbers, and consider the sequences:

              tn = inf {an, an+1, an+2, ...}      and      Tn = sup {an, an+1, an+2, ...} .

Then {tn} increases, {Tn} decreases, and inf
k ∈ ℕ

ak ≤ tn ≤ Tn ≤ sup
k ∈ ℕ

ak for all n (why?). Thus we may 

speak of lim
n→∞

tn as the “lower limit” and lim
n→∞

Tn as the “upper limit” of our original sequence {an}.

        

Now these same considerations are meaningful even if we start with an unbounded sequence {an}, 
although in that case we will have to allow the values ±∞ for at least some of the tn’s or Tn’s 
(possibly both). That is, if we permit comparisons to ±∞, then the tn’s will increase and the Tn’s will 
decrease. Of course we will want to use sup

n ∈ ℕ

tn and inf
n ∈ ℕ

Tn in place of lim
n→∞

tn and lim
n→∞

Tn, since 

“sup” and “inf” have more or less obvious extensions to subsets of the extended real number system 
[-∞, ∞], whereas “lim” does not. 

Even so, we are sure to get caught saying something like “{tn} converges to +∞”. But we will pay a 
stiff penalty for too much rigor here; even a simple fact could have a tediously long description. 
Therefore, for the remainder of this chapter we will interpret words such as “limit” and “converges” 
in this looser sense. 

Definition: Given any sequence of real numbers {an}, we define



lim
n→∞

inf an = lim
n→∞

an = sup
n ∈ ℕ

inf
k≥n
ak = sup

n≥1
{inf {an, an+1, an+2, ...}}

and
lim
n→∞

sup an = lim
n→∞

an = inf
n ∈ ℕ

sup
k≥n
ak = inf

n≥1
{sup {an, an+1, an+2, ...}}

That is,
 lim
n→∞

inf an = sup
n ∈ ℕ

tn  ( = lim
n→∞

tn if {an}  is bounded from below)

and
 lim
n→∞

sup an = inf
n ∈ ℕ

Tn  ( = lim
n→∞

Tn  if {an} is bounded from above) .

The name “lim inf” is short for “limit inferior”  while  “lim sup” is short for “limit superior”. 

Example:

a) Let an =
1
n

. Then tn = inf
k≥n
ak = 0  and Tn = sup

k≥n
ak =

1
n . Clearly lim

n→∞
tn = lim

n→∞
(0) = 0 and 

lim
n→∞

Tn = 0. Thus lim
n→∞

inf an = lim
n→∞

sup an = 0 .

b) Let {an}n=1
∞  be the sequence 1, 12 , 12 , 23 , 13 , 34 , 14 , ..... That is, a2 k =

k-1
k

 and a2 k-1 =
1
k

. Then 

tn = 0 and Tn = 1 (why?). Clearly lim
n→∞

inf (an) = 0 < 1 = lim
n→∞

sup(an) .

c) Let {an}n=1
∞  be the sequence {1, -1, 2, -2, 3, -3 ....}. 

   Then lim
n→∞

inf an = -∞ < ∞ = lim
n→∞

sup an .

 

d) Let an =
(-1)n

1 +
1

n

. Then lim
n→∞

inf an = -1  while lim
n→∞

sup an = 1 .    

 

                         SOME SPECIAL SEQUENCES

We shall now compute the limits of some sequences which occur frequently, but before doing so let 
us review the binomial theorem:

     (x+ y)n = ∑
k=0

n n
k
xk yn-k        where    

n
k

=
n!

k! (n-k)! . 

Example:
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a)� (x+ y)2 = y2
2
0

+ xy
2
1

+ x2
2
2

= y2 2!
0!·2! + xy

2!
1!·1! + x

2 2!
2!·0! = y

2 + 2 xy+ x2.

b) (x+ y)3 = y3
3
0

+ xy2
3
1

+ x2 y
3
2

+ x3
3
3

                 = y3 3!
0!·3! + xy

2 3!
1!·2! + x

2 y 3!
2!·1! + x

3 3!
3!·0!

                 = y3 + 3 xy2 + 3 x2 y+ x3 . 

     
����� To proceed we will also need the following: If 0 ≤ xn ≤ sn for some n ≥ N , where N  is a fixed 
number, and if sn → 0, then it is always true that xn → 0. 

• Theorem:

a) If p > 0, then lim
n→∞

1
np = 0. 

b) If p > 0, then lim
n→∞

pn = 1.

c) lim
n→∞

n
n

= 1.

d) If p > 0 and α ∈ , then lim
n→∞

nα

(1+p)n = 0.

e) If x < 1, then lim
n→∞

xn = 0.

Proof:

a) Take n > 
1
ε


1/p

. (Note that the Archimedian property of  is used here).   ✓

b) If p > 1, put xn = pn - 1. Then xn > 0  and by the binomial theorem we have 

       1+ n xn ≤ (1+ xn)n = p ⟹ 0 < xn ≤
p-1
n             

Hence xn → 0. 
If p = 1, b) is trivial, and if 0 < p < 1, the result is obtained by taking reciprocals.  ✓

c) Put xn = n
n

- 1. Then xn ≥ 0 and by the binomial theorem we have 

n = (1+ xn)n ≥
n (n -1)
2 xn2 ⟹ 0 ≤ xn ≤

2
n -1       (n ≥ 2)      ✓

         
d) Let k > α and k > 0. For n > 2 k, observe that 

    n- k + 1- n2 =
n
2 - k + 1 > k - k + 1 = 1 > 0. 

Thus, n- k + 1 >
n
2 . 

Notice that 
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       (1+ p)n >
n
k
pk =

n(n-1)... (n-k+1)
k! pk > nk

2k k!
pk    (why?)

Hence

0 <
nα

(1+p)n <
2k k!
pk

nα-k   (n > 2 k)

Since α- k < 0, it follows that nα-k → 0 by a)  .          ✓

e) If Simply take α = 0 in d) .   ✓ ■

                SERIES

In the remainder of this chapter all sequences and series under consideration will be complex-
valued, unless the contrary is explicitly stated. 

The Cauchy criterion (i.e. every convergent sequence is Cauchy) can be restated in the following 
form:

• Theorem:

∑an converges iff for every ε > 0 there is an integer N  such that ∑
k=n

m
ak ≤ ε if m ≥ n ≥ N . 

** In particular, by taking m = n, the above expression becomes an ≤ ε. Also notice that if n = N  

and m → ∞, the expression becomes ∑
n=N

∞

an ≤ ε .**

Proof:
In  and in ℂ every Cauchy sequence converges (why?). Thus the sequence sn of partial sums is 
convergent iff it is Cauchy. Now, sn is Cauchy if for any ε > 0 there is some N  such that n, m ≥ N  

implies sn - sm < ε.
If m ≥ n we have 

sn - sm = sm - sn = ∑
k=1

m
ak - ∑

k=1

n
ak = ∑

k=n+1

m
ak . ■

• Corollary: 
If ∑an converges, then lim

n→∞
an = 0.

The condition an → 0 is not, however, sufficient to ensure convergence of ∑an. For instance the 

series ∑
n=1

∞
1
n  diverges, as we’ll demonstrate later. 
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• Corollary: 
A series of nonnegative terms converges iff its partial sums form a bounded sequence. 

We now turn to a convergence test of a different nature, the so-called comparison test:

• Theorem:
a) If an ≤ cn for n ≥ N0, where N0 is some fixed integer, and if ∑cn converges, then ∑an converges. 
b) If an ≥ dn ≥ 0  for n ≥ N0, and if ∑dn diverges, then ∑an diverges. 
**Note that b) applies only to series of nonnegative terms an.**

Proof:

Given ε > 0, there exists N ≥ N0 such that m ≥ n ≥ N  implies ∑
k=n

m
ck ≤ ε  by the Cauchy criterion. 

Hence

              ∑
k=n

m
ak ≤ ∑

k=n

m
ak ≤ ∑

k=n

m
ck ≤ ε

and a) follows. 
Next, b) follows from a), for if ∑an converges, so must ∑dn . ■

����� The comparison test is a very useful one. To use it efficiently though, we have to become 
familiar with a number of series of nonnegative terms whose convergence or divergence is known. 

                     SERIES OF NONNEGATIVE TERMS

The simplest of all is perhaps the geometric series:

• Theorem:

If 0 ≤ x < 1, then ∑
n=0

∞

xn = 1
1-x . If x ≥ 1, the series diverges.

Proof:
If x ≠ 1, 

 sn = ∑
k=0

n
xk = 1 -xn+1

1 -x . 

The result follows if we let n → ∞. 
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For x = 1, we get 1+ 1+ 1+ ...+ 1, which evidently diverges.  ■

In many cases which occur in applications, the terms of the series decrease monotonically. The 
following theorem of Cauchy is therefore of particular interest. The striking feature of the theorem is 
that a rather “thin” subsequence of {an} determines the convergence or divergence of ∑an. 

• Theorem:

Suppose a1 ≥ a2 ≥ ... ≥ 0. Then the series ∑
n=1

∞

an converges iff the series 

∑
k=0

∞

2k a2k = a1 + 2 a2 + 4 a4 + 8 a8 + ...  converges.

Proof:
Since the series under consideration has nonnegative terms, it suffices to consider boundedness of 
the partial sums. 
Let sn = a1 + a2 + ...+ an  and tk = a1 + 2 a2 + ...+ 2k a2k . 

             

               ■

• Corollary 1: 


1
np  converges if p > 1 and diverges if p ≤ 1.

Proof:

If p ≤ 0, lim
n→∞

1
np = lim

n→∞
n-p = ∞ and the series diverges. 
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If p > 0, the sequence 1np  decreases and the above theorem applies and we are led to the series 

∑
k=0

∞

2k
1
2 kp

= ∑
k=0

∞

2(1-p) k. Now, 21-p < 1 iff 1- p < 0, and the result follows by comparison with the 

geometric series ∑xk, where x = 21-p. ■

• Corollary 2: 

If p > 1, 
1

n(log n)p
 converges. If p ≤ 1, the series diverges .

Proof:

The monotonicity of the logarithmic function implies that {log n} increases. Hence  1
n log n  

decreases, and we can apply the above theorem. 
This leads us to the series

∑
k=1

∞

2k
1

2 k log 2kp
= ∑
k=1

∞
1

(k log 2)p
=

1
(log 2)p

∑
k=1

∞
1
k p

and the conclusion follows. ■

This procedure may evidently be continued. For instance, ∑
n=3

∞
1

n log n · log(log n)  diverges, whereas

∑
n=3

∞
1

n log n · (log(log n))2
 converges. 

                     THE NUMBER ⅇ

Definition: ⅇ = ∑
n=0

∞
1
n ! . 

Since sn = 1+ 1+ 1
1·2 +

1
1·2·3 + ...+

1
1·2·...· n

             < 1+ 1+ 1
2 +

1
22

+ ...+ 1
2n-1

< 3

the series converges, and the definition makes sense. In fact, the series converges very rapidly and 
allows us to compute ⅇ with great accuracy. 
It is of interest to note that ⅇ can also be defined by means of another limit process; the proof pro-
vides a good illustration of operations with limits.

• Theorem:

lim
n→∞

1+ 1
n 
n
= ⅇ .
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Proof:

Let sn = ∑
k=0

∞
1
k !  and tn = 1+ 1

n 
n. 

Clearly the sequence sn is monotonically increasing. To see that tn is also monotonically increasing, 

observe that by the binomial theorem tn = 1+ 1
n 
n
> 1+ n 1n  = 2. In fact, if a > -1, a ≠ 0, then 

(1+ a)n > 1+ n a. 
Now we have

tn+1
tn

=
1 + 1

n+1
n+1

1 + 1n
n = 1+ 1

n 
1+

1
n+1

1 + 1n

n+1

        = 1+
1
n

 
n2+2 n
(n+1)2


n+1

        = 1+
1
n

 1- 1
(n+1)2


n+1

        > 1+
1
n

 1- 1
n+1  = 1

Thus tn+1 > tn and tn is increasing, as desired. 

By the binomial theorem, 

tn = 1+ 1+ 1
2! 1-

1
n

+
1
3! 1-

1
n

 1-
2
n

+ ...+ 1
n! 1-

1
n

 1-
2
n

 ... 1-
n-1
n  ≤ sn < ⅇ .

Thus, {tn}n=1
∞  is also a bounded sequence. Hence lim

n→∞
tn = α ≤ ⅇ.

Next, if n ≥ m,

tn = 1+ 1+ 1
2! 1-

1
n

+ ...+ 1
m! 1-

1
n

 1-
2
n

 ... 1-
m-1
n

+ ...+ 1
n! 1-

1
n

 ... 1-
n-1
n 

   ≥ 1+ 1+ 1
2! 1-

1
n

+ ...+ 1
m! 1-

1
n

 ... 1-
m-1
n



Thus, 

α > tn ≥ 1+ 1+ 1
2! 1-

1
n

+ ...+ 1
m! 1-

1
n

 ... 1-
m-1
n



Now let n → ∞, keeping m fixed.  We get

          α > 1+ 1+ 1
2! + ...+ 1

m! = sm         

This means that α ≥ lim
n→∞

sm = ⅇ, which implies that α = ⅇ.        ■

The rapidity with which the series 
1
n!  converges can be estimated as follows: 

If sn has the same meaning as above, we have

           ⅇ- sn =
1

(n+1)! +
1

(n+2)! +
1

(n+3)! + ... < 1
(n+1)! 1+ 1

(n+1) +
1

(n+1)2
+ ... = 1

n! n

so that  0 < ⅇ- sn <
1
n! n  .
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Thus, s10, for instance, approximates ⅇ with an error less than 10-7. The inequality is of theoretical 
interest as well, since it enables us to prove the irrationality of ⅇ. 

• Theorem:
ⅇ is irrational.

Proof:

Suppose ⅇ is rational. Then ⅇ =
p
q , where p and q  are positive integers. By the inequality preceding 

this theorem, we have

(*) 0 < q! (ⅇ- sq) <
1
q  .

By our assumption, q! ⅇ  is an integer. Since

q! sq = q! 1+ 1+ 1
2! + ...+ 1

q! 

is an integer, we see that q! (ⅇ- sq)  is an integer. 

But then since q ≥ 1, (*) implies the existence of an integer between 0 and 1. (⇒⇐)

Thus we have reached a contradiction and therefore we conclude thet ⅇ must be irrational.  ■

           

                      THE ROOT AND RATIO TESTS

• Theorem (Root Test):

Given ∑an, put α = lim
n→∞

sup an
n

.

Then,
a) If α < 1, ∑an converges. 
b) If α > 1, ∑an diverges. 
c) If α = 1, the test gives no information. 

Proof:

a) If α < 1, we can choose β so that α < β < 1, and an integer N  such that an
n

< β  for n ≥ N . 

That is, n ≥ N  implies an < β n. Since 0 < β < 1, ∑ β n converges. Convergence of ∑an follows 

now from the comparison test.     ✓

b) If α > 1, then, again, there is a sequence {nk} such that ank 
nk

→ α. Hence an > 1 for infinitely 

many values of n, so that the condition an → 0, necessary for the convergence of ∑an, does not hold.   
✓

c) Consider the series 
1
n , 

1
n2

.
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We can see that 1 / n
n

→ 1 and 1 / n2
n

→ 1 but the former series diverges while the latter con-

verges. Hence, we have that α = 1 gives no information.  ✓  ■

• Theorem (Ratio Test):
The series ∑an

a) converges if lim
n→∞

sup 
an+1
an

 < 1

b) diverges. if 
an+1
an

 ≥ 1  for all n ≥ n0, where n0 is some fixed integer. 

Proof:

a) If condition a) holds, we can find β < 1, and an integer N  such that 
an+1
an

 < β  for n ≥ N . In 

particular, 

                                      

That is, aN+p < an β-N β n  for n ≥ N , and a) follows from the comparison test, since ∑ β n con-

verges.        ✓

b) If  an+1 ≥ an for n ≥ n0, it is easy to see that the condition an → 0 does not hold, and a) follows.     
✓        ■

����� The knowledge that lim
n→∞

an+1
an

= 1 implies nothing about the convergence of ∑an. The series 


1
n and 

1
n2

 demonstrate this. 

Example:
a) Consider the series 

          12 +
1
3 +

1
22

+
1
32

+
1
23

+
1
33

+
1
24

+
1
34

+ ...

for which 

lim
n→∞

inf
an+1
an

= lim
n→∞


2
3 
n
= 0

lim
n→∞

inf an
n

= lim
n→∞

1
3n

2 n
=

1

3

lim
n→∞

sup an
n

= lim
n→∞

1
2n

2 n =
1

2

10 ���  Sequences and Series.nb



lim
n→∞

sup
an+1
an

= lim
n→∞

1
2 

3
2 
n
= ∞    .

The root test indicates convergence whereas the ratio test does not apply.   

b) The same is true for the series 

          12 + 1+ 1
8 +

1
4 +

1
32 +

1
16 +

1
128 +

1
64 + ...

where 

lim
n→∞

inf
an+1
an

=
1
8

lim
n→∞

sup
an+1
an

= 2

but

lim
n→∞

inf an
n

=
1
2  .                

• Theorem:
For any sequence {cn} of positive numbers, 

     

Proof:
We shall prove the second inequality; the proof of the first is quite similar.  
Put 

α = lim
n→∞

sup
cn+1
cn

If α = +∞, there is nothing to prove. If α is finite, choose β > α. There is an integer N  such that 
cn+1
cn

≤ β  for n ≥ N . In particular, for any p > 0, 

 cN+k+1 ≤ β cN+k   (k = 0, 1, ..., p- 1) .

Multiplying these inequalities, we obtain
                  cN+p ≤ βp cN  .

or 
cn ≤ cN β-N · β n      (n ≥ N ) .

Hence

cn
n

≤ cN β-Nn
· β ,

so that

lim
n→∞

sup cn
n

≤ β

because lim
n→∞

sup cN β-Nn
= 1.

Since lim
n→∞

sup cn
n

≤ β  for every β > α, we have lim
n→∞

sup cn
n

≤ α.      ■ 
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                               POWER SERIES

Definition: Given a sequence {cn} of complex numbers, the series ∑
n=0

∞

cn zn  is called a power series. 

The numbers cn are called the coefficients of the series, while z is a complex number. 

In general, the series will converge or diverge, depending on the choice of z. More specifically, with 
every power series there is associated a circle (the circle of convergence), such that the power series 
converges if z  is in the interior of the circle and diverges otherwise (to cover all cases we have to 
consider the plane as the interior of a circle of infinite radius, and a point as a circle of radius zero). 
The behavior of the circle of convergence is much more varied and cannot be described so simply. 

          
• Theorem:
Given the power series ∑cn zn, put 

α = lim
n→∞

sup cn
n

  , R =
1
α

(If α = 0, R = +∞. If α = +∞, R = 0)
Then ∑cn zn converges if z < R and diverges if z > R .

Proof:
Put an = cn zn and apply the root test:

                 lim
n→∞

sup an
n

= z lim
n→∞

sup cn
n

=
z
R     ■

                 
����� R is called the convergence radius of ∑cn zn. 

Example:
a) The series ∑nn zn has R = 0.           

b) The series 
zn

n!  has R = ∞  (In this particular case the ratio test is easier to apply than the root 

test). 

c) The series ∑zn has R = 1. If z = 1, the series diverges, since {zn} does not tend to 0 as n → ∞. 

d) The series 
zn

n  has R = 1. It diverges if z = 1 and converges for all other z with z = 1 (the last 

assertion will be proved later). 
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e) The series 
zn

n2
 has R = 1. It converges for all z  with z = 1 by the comparison test, since 


zn

n2
 =

1
n2

 . 

                SUMMATION BY PARTS

          
• Theorem:

Given two sequences {an}, {bn}, put An = ∑
k=0

n
ak  if n ≥ 0; put A-1 = 0. 

Then, if 0 ≤ p ≤ q, we have  

              (**)         ∑
n=p

q

an bn = ∑
n=p

q-1

An(bn - bn+1) + Aq bq - Ap-1 bp .

Proof:

∑
n=p

q

an bn = ∑
n=p

q

(An - An-1) bn = ∑
n=p

q

An bn - ∑
n=p

q

An-1 bn

         = ∑
n=p

q

An bn - ∑
n=p-1

q-1

An bn+1

         = Aq bq + ∑
n=p

q-1

An bn - ∑
n=p

q-1

An bn+1 - Ap-1 bp

         = ∑
n=p

q-1

An(bn - bn+1) + Aq bq - Ap-1 bp. ■

����� Formula (**) from the above theorem, the so-called partial summation formula, is useful in 
the investigation of series of the form ∑an bn, particularly when {bn} is monotonic. 

• Theorem:
Suppose
i) The partial sums An of  ∑an form a bounded sequence.
ii) b0 ≥ b1 ≥ b2 ≥ ... ≥ 0. 

iii) lim
n→∞
bn = 0. 

Then, if all three properties hold, ∑an bn converges. 

Proof:
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Choose M  such that An ≤ M  for all n. Given ε > 0, there is an integer N  such that bN ≤
ε
2M . For 

N ≤ p ≤ q, we have

∑
n=p

q

an bn = ∑
n=p

q-1

An(bn - bn+1) + Aq bq - Ap-1 bp

                 ≤ M ∑
n=p

q-1

(bn - bn+1) + bq + bp   

                 = 2M bp ≤ 2M bN ≤ ε. 

Convergence then follows from the Cauchy criterion. ■

• Theorem:
Suppose
i)  c1 ≥  c2 ≥  c3 ≥ ....

ii) c2 m-1 ≥ 0, c2 m ≤ 0  (m = 1, 2, 3, ...) 

** Series for which ii) holds are called “alternating series” **
iii) lim

n→∞
cn = 0. 

Then, if all three properties hold, ∑cn converges. 

Proof:
Put ∑cn = ∑an bn, where an = (-1)n+1, bn = cn. 

Notice that An = ∑
k=1

n
an is bounded with An ≤ 1 and bn ≥ bn+1. Thus the result follows from the 

previous theorem. ■

• Theorem:
Suppose the radius of convergence of ∑cn zn is 1, and suppose c0 ≥ c1 ≥ c2 ≥ ... and  lim

n→∞
cn = 0. 

Then ∑cn zn converges at every point on the circle z = 1, except possibly at z = 1. 

Proof:
Put an = zn, bn = cn. Then

          An = ∑
m=0

n
zm = 

1-zn+1

1-z  ≤
1 + zn+1

1-z =
1 + 1
1-z =

2
1-z

if z = 1, z ≠ 1. ■
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ABSOLUTE CONVERGENCE

The series ∑an  is said to converge absolutely if the series ∑an converges. 

• Theorem:
 If ∑an converges absolutely, then ∑an converges. 

Proof:

The assertion follows from the inequality ∑
k=n

m
ak ≤ ∑

k=n

m
ak, plus the Cauchy criterion.  ■

����� For series of positive terms, absolute convergence is the same as convergence. 

If ∑an converges, but ∑an diverges, we say that ∑an converges non-absolutely. 
For instance, the series 


(-1)n

n  

converges non-absolutely. 

The comparison test, as well as the root and ratio tests, are tests for absolute convergence and there-
fore cannot give any information about non-absolutely convergent series. Summation by parts can 
sometimes be used to handle the latter. In particular, power series converge absolutely in the interior 
of the circle of convergence. 
We shall see that we may operate with absolutely convergent series very much as with finite sums. 
We may multiply them term by term and we may change the order in which the additions are 
carried out, without affecting the sum of the series. However, for non-absolutely convergent series 
this is no longer true, and more care has to be taken when dealing with them. 

        

       ADDITION AND MULTIPLICATION OF SERIES

• Theorem:
 If ∑an = A, and ∑bn = B, then ∑(an + bn) = A+ B, and ∑c an = cA, for any fixed c.

Proof:

Let An = ∑
k=0

n
ak and Bn = ∑

k=0

n
bk . Then An + Bn = ∑

k=0

n
(ak + bk) .

Since lim
n→∞

An = A  and lim
n→∞

Bn = B, we see that lim
n→∞

(An + Bn) = A+ B .
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The proof of the second assertion is similar. ■

Thus, two convergent series may be added term by term, and the resulting series converges to the 
sum of the two series. The situation becomes more complicated when we consider multiplication of 
two series. 
To begin with, we have to define the product. This can be done in several ways; we shall now con-
sider the so-called  Cauchy product:

Definition: Given ∑an and ∑bn, we put 

cn = ∑
k=0

n
ak bn-k   (n = 0, 1, 2, ...)

and call ∑cn the product of the two given series. 

This definition may be motivated as follows. If we take two power series ∑an zn and ∑bn zn, multiply 
them term by term, and collect terms containing the same power of z, we get 
  

               ∑
n=0

∞

an zn · ∑
n=0

∞

bn zn = (a0 + a1 z+ a2 z2 + ...) · (b0 + b1 z+ b2 z2 + ...)

                   = a0 b0 + (a0 b1 + a1 b0) z+ (a0 b2 + a1 b1 + a2 b0) z2 + ...

                    = c0 + c1 z+ c2 z2 + ...

Now by setting z = 1, we arrive at the above definition. 

Example:

If        An = ∑
k=0

n
ak ,        Bn = ∑

k=0

n
bk , Cn = ∑

k=0

n
ck

and An → A, Bn → B, then it is not at all clear that {cn}n=1
∞  will converge to AB, since we do not have 

Cn = An Bn. 
The dependence of {cn} on {An} and {Bn} is quite a complicated one. We shall now see that the 
product of two convergent series may actually diverge.
The series 

∑
n=0

∞
(-1)n

n+1
= 1- 1

2
+

1

3
-

1

4
+ ...

converges by the alternating test. 

We form the product of this series with itself and obtain 

∑
n=0

∞

cn = 1- 1

2
+

1

2
+

1

3
+

1

2 2
+

1

3
-

1

4
+

1

3 2
+

1

2 3
+

1

4
...
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where cn = ∑
k=0

n
(-1)k

k+1
·

(-1)n-k

n-k+1
= (-1)n ∑

k=0

n
1

k+1 n-k+1

  = (-1)n ∑
k=0

n
1

(k+1) (n-k+1)

To estimate cn, observe that the function
        f (x) = (x+ 1) (n- x+ 1)       x ∈ [0, n]

is differentiable over (0, n) with derivative

       f ' (x) = (n- x+ 1) - (x+ 1) = n- 2 x = 0       when x = n
2 .

Notice that f '' (x) = -2 < 0 ⟹ f '' 
n
2  < 0, implying that f 

n
2  is a local maximum. 

Also notice that 

f 
n
2  = 

n
2 + 1 n- n2 + 1 = 

n
2 + 1

2
>
n
2 + 1

whereas

f (n) = f (0) = n+ 1 <
n2
4 + n+ 1 = 

n
2 + 1

2
= f 

n
2 

Thus f 
n
2  is the absolute maximum. In particular, for 0 ≤ k ≤ n we have

    (k + 1) (n- k + 1) ≤ 
n
2 + 1

2
     or     (k + 1 (n- k + 1) ≤ 

n
2 + 1

2
=
n
2 + 1.

Therefore

   1
(k+1) (n-k+1)

≥
1
n
2 +1

=
2
n+2  .

Thus

cn = ∑
k=0

n 1
(k+1) (n-k+1)

≥ ∑
k=0

n 2
n+2 =

2 (n+1)
n+2

which implies that 

            lim
n→∞

sup cn ≥ lim
n→∞

sup
2 (n+1)
n+2 = 2

suggesting that ∑cn diverges by he divergence test. 

In view of the next theorem, due to Mertens, we note that we have here considered the product of 
two nonabsolutely convergent series. 

• Theorem:
Suppose

i) ∑
n=0

∞

an converges absolutely .

ii) ∑
n=0

∞

an = A

Sequences and Series.nb  ���17



iii) ∑
n=0

∞

bn = B

iv) cn = ∑
k=0

n
ak bn-k  (n = 0, 1, 2, ...)

Then, if all four conditions are satisfied we have that ∑
n=0

∞

cn = A B . 

** That is, the product of two convergent series converges, and to the right value, if at least one of 
the two series converges absoultely. **

Proof:

Put     An = ∑
k=0

n
ak ,  Bn = ∑

k=0

n
bk ,  Cn = ∑

k=0

n
ck ,   βn = Bn - B .

Then, 
           Cn = a0 b0 + (a0 b1 + a1 b0) + ...+ (a0 bn + a1 bn-1 + ...+ an b0)
                = a0 βn + a1 βn-1 + ...+ an β0

                = a0(B + βn) + a1(B + βn-1) + ...+ an(B + β0)

                = An B + a0 βn + a1 βn-1 + ...+ an β0

Put 
 γn = a0 βn + a1 βn-1 + ...+ an β0.

We wish to show that Cn → AB. Since An B → AB, it suffices to show that lim
n→∞

γn = 0. 

Put 

α = ∑
n=0

∞

an.

(It is here that we use i)). Let ε > 0 be given. By iii), βn → 0. Hence we can choose N  such that 

βn ≤ ε  for n ≥ N , in which case

γn ≤ β0 an + ...+ βN an-N + βN+1 an-N-1 + ...+ βn a0 

      ≤ β0 an + ...+ βN an-N + ε α .

Keeping N  fixed, and letting n → ∞, we get
lim
n→∞

sup γn ≤ lim
n→∞

sup β0 an + ...+ βN an-N + ε α = ε α .

Since ε is arbitrary, cn → AB  (because γn → 0) as desired. ■
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